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A uniformly valid asymptotic solution for large Reynolds number is constructed 
for plane steady laminar flow of a liquid into the channel between two semi- 
infinite parallel plates. The entry condition is taken as either that for a cascade 
of plates in a uniform oncoming stream, or uniform flow directly a t  the inlet. 
A paradox in the standard solution of Schlichting-that near the inlet the flow 
due to displacement would not be the accelerated uniform core on which his 
expansion is based-is resolved by showing that his series for small as well as 
large distance actually applies only to conditions far downstream, and matches 
with another expansion valid near the inlet. Good agreement is found with three 
independent numerical solutions of the full Navier-Stokes equations, except for 
a discrepancy in one solution for uniform entry that is traced to  erroneous neglect 
of inlet vorticity. 

1. Introduction 
The development of a parabolic Poiseuille profile downstream of entry into 

a plane channel is one of the standard problems in laminar-flow theory. It has 
attracted more attention than is warranted by its intrinsic practical importance, 
because i t  exemplifies certain general features of viscous flow. It therefore appears 
in textbooks, and is continually re-examined as new phenomena are introduced. 
Thus it has been extended to axisymmetric flow (Atkinson & Goldstein 1938), 
tested for stability (Hahneman, Freeman & Finston 1948), modified €or mag- 
netohydrodynamics (Shercliff 1956), for a non-Newtonian liquid (Collins & 
Schowalter 1963), for suction or injection through porous walls (Horton & Yuan 
1964), for a viscoelastic fluid (Metzner & White 1965), for a compressible fluid 
(Blankenship & Chung 1967), and for a tube of general cross-section (McComas 
1967). 

Most approximate analyses of the problem (approaching 100 in number) 
involve some form of Prandtl’s boundary-layer approximation. Four general 
methods of solution may be discerned in the literature: (1) numerical finite- 
difference solution of the boundary-layer equations (initiated by Bodoia & 
Osterle 1961), (2) linearization of the inertia terms (Boussinesq 1891; Langhaar 
1942), (3) integral methods (Schiller 1922), and (4) series expansions (Schlichting 
1934). 

We are concerned here with understanding an assumption common to the last 
two methods: that the flow consists of boundary layers near the walls together 
with a central inviscid core in which the velocity increases downstream to satisfy 
continuity but is uniform and parallel a t  each station (figure 1). This last feature 
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seems to present a paradox, which is particularly evident in the analysis of 
Schlichting. He solves the boundary-layer equations by expanding the stream 
function in a series for small distances from the inlet, starting with the Blasius 
solution, and matching with the pressure distribution for a uniform accelerating 
core. However, the displacement effect of the boundary layers induces a change 
in the inviscid flow that would obviously, near the inlet, have no resemblance to 
a uniform core. It would approach a uniform core far downstream, but for large 
distances Schlichting (following Boussinesq) constructs another asymptotic 
expansion by perturbing the final Poiseuille flow and patching with the first 
series at  an intermediate station. 

The details of the inviscid core near the entrance will depend upon the entry 
conditions. Two models have been used in the literature: (1) uniform parallel 
flow at entry, which is supposed to approximate the situation following m rapid 
well-rounded contraction, and (2) uniform flow far upstream, with the channel 
walls extended upstream as streamlines, which corresponds to an infinite cascade 
of equally-spaced plates in a uniform oncoming stream (figure 1) .  

We seek a uniformly valid approximation for large Reynolds number under 
both entry conditions. In so doing, we resolve the paradox of the uniform core 
by showing that Schlichting’s entire analysis represents only a ‘ downstream ’ 
analysis, which matches (in the sense of the method of matched asymptotic 
expansions) with an ‘upstream’ expansion valid near the inlet.? 

Happily, finite-difference solutions of the full Navier-Stokes equations have 
been carried out for these two entry conditions at  one Reynolds number by 
Wang & Longwell (1964), and for uniform entry at  several Reynolds numbers by 
Gillis & Brandt (1964) (see also Brandt & Gillis 1966). The agreement with our 
solution is good except in Wang & Longwell’s case of uniform entry, and that 
discrepancy has been traced to the fact that they overlooked vorticity at the 
inlet. 

2. Cascade in uniform oncoming stream 
Schlichting’s classical paper is a model of brevity; and we seek comparable 

conciseness by explaining our solution largely in physical terms, leaving the 
interested reader to restore the straightforward mathematical details. We start 
with the case of uniform flow far upstream of a cascade of plates, which is the 
simpler entry condition. 

Near the inlet it is natural to  refer lengths to the half-width a of the channel, 
and velocities to the free-stream speed U (figure 1). We call these upstream 
variables, and use them to construct an upstream expansion valid near the inlet. 
[We disregard a tiny circular neighbourhood of each leading edge-region 0 of 
figure 1-where the characteristic reference length is v /  U .  There a first approxi- 
mation is the solution of the full Navier-Stokes equations for a semi-infinite 
plate, which has been calculated approximately by Davis (1967).] We define 
the Reynolds number as R = Ua/v. 

t The upstream expansion has been studied much more thoroughly by Wilson (1970). 
His independent analysis came to our attention while the present paper was in proof. 
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As R becomes infinite (but the motion remains steady and laminar !) the flow 
tends to the uniform stream for all bounded x (region I of figure 1) except a t  the 
surface of each plate (region 11). There it approaches the Blasius flat-plate 
boundary layer, so that near the upper and lower plates of figure 1 the (dimension- 
less) stream function is 

$ N t- [1 - R - J ( Z x ) ~ f ( ~ ) ] ,  7 = R*(1 T Y ) / ( ~ x ) * .  (2.1) 
Here f is the Blasius function in the Falkner-Skan normalization (Rosenhead 
1963, p. 2 2 2 ) .  

FIGURE I. Notation in upstream variablos. The conventional uniform-core model is shown 
above centreline, and conditions for cascade of plates in uniform oncoming strcam below. 
The upstream region consists of the inviscid core I and boundary layers 11; the downstream 
region is marked 111. 

2.1. Plow due to displacement 

A second approximation in the inviscid core (region I) is found by substituting + = y + R-J+2(x, y )  + . . . into the Navier-Stokes equations. Here +2 represents 
the flow due to  displacement. I n  this problem it is a potential flow that vanishes 
far upstream, and has on each plate surface the outward normal velocityP(Zx)-* 
induced by the Blasius boundary layer, where p = 1.21678. 

We have solved this potential problem by distributing sources along each 
plate of the cascade, and equivalently by applying the Fourier transformation 
from the viewpoint of generalized functions (Lighthill 1958). The source method 
is the simpler for calculating velocities a t  finite x .  It gives the streamwise velocity 
increment in region I as 

[~2+(2n- l -y)~]*-x  --)I + . (2.2) - (  x2+(2n-11y)2 

Here tho second and third terms are the contributions of the nth plate below 
and above the centreline y = 0, and the first term serves to restore the velocity 
to zero far upstream. The sum has been evaluated by computer using 50 and 
100 terms. 

The velocity profile across the inlet is shown in figure 2 for R = 75. The 
upstream expansion, consisting of the uniform stream plus the flow due to dis- 
placement, agrees surprisingly well with the full numerical solution, and differs 
significantly from a uniform core. This inviscid approximation applies across the 
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entire inlet if the boundary layer is calculated in Cartesian co-ordinates. How- 
ever, the approximation is further improved near the plate by forming a multi- 
plicative composite expansion (Van Dyke 1964) as the inviscid expansion times 
the Blasius boundary-layer solution in parabolic co-ordinates divided by their 
common element, which is [l - @R-h( 1 5 y)-&]. Parabolic co-ordinates have been 
used to allow upstream influence of viscosity; they are optimal for a single plate 
(Kaplun 1954) and therefore presumably nearly optimal for the cascade. 

FIGURE 

. 
3 

/ / / / / / / / / / / / / / / / / / / / / / /  

UI u 
Streamwise velocity profile across inlet to cascade of plates at  R = 5 

. . . , uniform core (Schlichting 1934); ---, 2-term upstream expansion; - , compo- 
site upstream expansion using boundary layer in parabolic co-ordinates ; 0, full nuinericd 
solution (Wang & Longwell 1964). 

Although the inviscid velocity profile is convex a t  the inlet, the source solution 
(2.2) shows that it becomes concave on the centreline a t  about x = 0.35. Profiles 
downstream of that station will consequently have maximum velocity OR the 
centreline until the peaks are eroded by the thickening boundary layers. This 
effect was first noticed by Wang & Longwell (1964) and Gillis & Brandt (1964) 
in their numerical solutions. 

The velocity along the centreline is shown in figure 3. Near the inlet, the 
upstream expansion agrees well with the full numerical solution. From com- 
parison also with the downstream approximation discussed below, it appears to 
remain valid several half-widths downstream. 

The approximation obviously deteriorates downstream. I ts  asymptotic 
behaviour can be found by recalculating the flow due to  displacement using the 
Fourier transformation with respect to  x, which gives for the transform of the 
stream function - /3 i sgn s - 1 sinh (27cry) 

(2.3) _ _ ~  $ra(y;s) = - 8 7 ~  Isla sinh(2m) ' 

Expanding for small s and inverting term-by-term using table I of Lighthill 
(1958) yields, for x+ -1- co, 
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This expression evidently ceases to be valid at  distances so great that x is of 
order R (in dimensional terms, at  distances of order Ua2/v). A physical interpreta- 
tion is that the displacement thickness of the Blasius boundary layers would fill 
the channel at  x = PFR. 

1.5 f 

-2 0 2 4 6 8 

xla 

FIGURE 3. Velocity along centreline for cascade of plates at  R = 75. ~ , 2-term 
upstream expansion; -. -. , 1-term downstream expansion (Bodoia & Osterle 1961); 
0, full numerical solution (Wang & Longwell 1964). 

2.2. Downstream approximation 

The non-uniformity for large x suggests introducing a contracted downstream 
variable 5 = x /R  (which is vx/Ua2 in dimensional terms), and thereby seeking 
a downstream expansion to complement the upstream expansion in its region of 
invalidity-region I11 of figure 1. Our variable is the square of Schlichting’s 
expansion quantity c. In  downstream variables the Navier-Stokes equations 
give for the stream function 

This suggests that the downstream expansion will proceed in powers of R-2. 
Setting R = co shows that the first approximation is a solution of Prandtl’s 

boundary-layer equations, with the streamwise pressure distribution unknown. 
[In contrast to classical boundary-layer theory, the transverse dimension is 
here O(1) rather than O(R-4) and the transverse velocity is O(H-l) rather than 
O(R-*). The classical orders reappear, however, in Schlichting’s expansion for 
small 5.3 Three t; derivatives have been lost, so the double upstream and down- 
stream boundary conditions of the full equation reduce to the single condition 
of matching with the upstream expansion. (The solution will automatically 
approach the Poiseuille flow downstream.) The asymptotic matching principle 
(Van Dyke 1964) asserts that the one-term upstream expansion of the one-term 
downstream expansion should equal the one-term downstream expansion of the 

52 F L M  44 
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oiie-term upstream expansion, which is simply y. Thus the problem for the first 
downstream approximation is 

( 2 . 6 ~ )  

( 2 . 6 b )  

?I.l(O,Y) = Y. ( 2 . 6 ~ )  

We recognize this as the problem undertaken by Schlichting. It was later 
solved numerically by Bodoia & Osterle (1961), and we adopt their results as 
being more accurate. Figure 3 shows the velocity on the centreline for R = 75, 
taken from the tables of Bodoia (1959). The transition from the upstream to the 
downstream approximation is so smooth that i t  is scarcely necessary to combine 
them into a uniformly valid composite expansion. Agreement with the full 
numerical solution is reasonably good throughout. 

Schlichting (1934) attacked the problem by expanding for small and large 5. 
[Additional terms were calculated by Collins S: Schowalter (1062) and Roidt & 
Ccss (1962).] The expansion for small [ is once more a singular perturbation, 
involving thin boundary layers on the plates, a id  t h e  accelerating but uniform 
core that is now seen to  be acceptable because i t  actually applies only far from the 
inlet. Thus we have resolved thc paradoxical aspect of Schlichting’s solution by 
idcntifying it as the expansion, for small contracted abscissa, of an approximation 
that is valid only far downstream. 

The second term in the downstream expansion would match with the second 
term in (2.4). This confirms that the correction would be of relative order R-?. 
Thus our one-term downstream approximation is more accurate than our two- 
term upstream expansion, which has an error of relative order R-1 even in the 
inviscid core. The factor (3y2- 1 )  in (2.4) means that the inviscid core would no 
longer be uniform far downstream in the second approximation. 

a 
- ($ll/YY - @Ill $ICY + $I< @my) = 07 a?J 

$I&, k 1)  = &/(k-,  k 1)  = 0, 

3. Uniform entry 
We turn now to the case, more frequently discussed in the literature, of 

uniform parallel flow at the inlet. The general structure of the asymptotic 
solution is the same; and we dwell only on some novel features that arise because 
weak vorticity is generated a t  the inlet. 

3.1. Plow due  to displacement 

The flow outside a boundary layer is usually irrotational, as in the previous case, 
but in general it is only inviscid. Thus again substituting 4 = y + R-A$,(x, y) + . . . 
into the Navier-Stokes equations shows that the flow due to  displacement is 
governed by the linearized E d e r  equations: 

a 
- V2$, = 0 or V2$, = -o(y). ( 3 . 1 )  ax 

(To this order the vorticity is constant along the streamlines y = const. of the 
basic uniform flow.) Whereas vorticity was absent in the previous case, i t  must 
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now be present in order to satisfy the conditions u = 1 and v = 0 a t  the inlet. 
That is, some mechanism such as a mesh of varying porosity would have to be 
imposed across the inlet to maintain uniform parallel inflow against the small 
pressure gradients induced by boundary-layer displacement. [Such a mesh has 
actually been used to approximate a flat initial profile in the axisymmetric 
experiments of Atkinson, Zdzislaw & Smith (1967) and others.] 

The general solution of (3.1) is 

$2 = 7k223(Xd) +F(Y), (3.2) 

where 7k2, is a potential function, and the arbitrary function P contains all the 
vorticity. We have solved the potential problem by adding to the previous 
system of source distributions a system of images of reversed sign reflected in 
the inlet plane x = 0 in order to maintain v = 0 there. This gives a streamwise 
velocity increment 

- ( [x2 + (an- 1 - y)2]S + x  
x2+(2n-1-y)2 

We then take the additional component F'(y) as the negative of the value of this 
velocity a t  the inlet, in order to make the total increment vanish there. Thus 
the streamwise velocity due to displacement is given by 

u2 = ~ , , (X ,Y) -Uz , (O,Y) .  (3.4) 

The resulting velocity distribution along the centreline for R = 75 is shown 
in figure 4. It disagrees with the numerical solution of Wang & Longwell (1964) 
even close to the inlet. Andreas Acrivos suggested that the discrepancy might 
result from neglect of inlet vorticity in the numerical solution. Although no 
evidence appears in the published work, it was found that in his thesis Wang 
(1963) does indeed replace the original inlet conditions u = 1, v = 0 by the 
erroneous set $ = y, o = 0. (It is possible, however, that the latter conditions 
would actually correspond more closely to entry from a well-rounded contrac- 
tion.) Gillis & Brandt (1964) [cf. Brandt & Gillis 19661 have avoided this error, 
and their velocity distributions have the inflected shape of our result. 

Solving the displacement problem instead by Fourier transformation shows 
that far downstream the velocity is now given asymptotically by 

Thus the upstream expansion is again invalid for x = O(R). 

3.2. Downstream expansion 

The leading term of the downstream expansion is the same as in the previous 
case, because the matching condition ( 2 . 6 ~ )  arises from the term proportional to 
xi that appears in (3.5) as well as (2.4). The centreline velocity from Gillis & 

52-2 



820 M .  Van. Dyke 

Brandt’s (1964) full numerical solution? is seen in figure 4 to  depart from our  
upstream expansion after a few half-widths, and to  tend toward that downstream 
approximation. 

1.5 r 
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FIGURE 4. Velocit,y along centreline for uniform entry a t  R = 75. ---, 2 term upstream 
expansion; -. -. , 1 term downstream expansion (Bodoia & Osterlo 1961); 0, full 
numerical solution (Wang & Longwell 1964) ; 0 ,  full numerical solution (Gillis & Brandt, 
interpolated from R = 25, 50, 100). 

The accuracy of the downstream approximation is less in this case, because the 
secondary term is no longer as small as order R-2. Rather, a term of order R-4 is 
required in order to match the new rotational component uzP(O,y) in ( 3 . 5 ) ,  and 
non-linearity then requires an expansion in successive powers of R-9. Setting 
11. = ll.l(&y) +B-h$2(t, y) + ... in the downstream equation (2.5) shows that the 
problem for the secondary term is 

( 3 . 6 ~ )  

P 2 ( E ,  f 1) = $&, k 1) = 0,  (3.6b) 

+2(0, Y) = %JO) Y). ( 3 . 6 ~ )  

Just as the leading downstream term is a solution of Prandtl’s boundary-layer 
equations, so the secondary term is a solution of the conventional second-order 
boundary-layer equations (Van Dyke 1969), with the pressure distribution 
unknown in each case. The solution could be calculated numerically by per- 
turbing the solution of Bodoia & Osterle (Isel), or by expanding in series 
following Schlichting (1934). 

a 
- ($z,?/v - 11.1, +2& - $2?/ $I& + $I[ $2,y + $2: 11.lYll) = 0, aY 

4. Discussion 
Uniform entry produces an interesting-though perhaps unrealistic-compli- 

cation that is absent from the cascade. The iiiviscid shear flow in the upstream 
expansion and the second term $-z in the downstream expansion are two different 

t Values for R = 7 5  have been obtained by interpolation in the solutions for R = 25, 
50, and 100. 
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views of a weak wake that forms behind whatever mechanism is imagined to 
enforce uniform parallel flow at the inlet. Because the Reynolds number is high, 
viscous diffusion of the wake is negligible in the upstream section, and asserts 
itself only over the long distance t o  the downstream region. 

Whereas the inlet condition on the transverse velocity component is adjusted 
by a potential flow within a distance of the order of the channel width, the 
longitudinal velocity is equilibrated only much more slowly in the wake. This is 
in accord with the general principle in boundary-layer theory that the thinner 
layer takes care of the higher normal derivative. Our wake is the counterpart in 
viscous flow of the ‘wide layer’ encountered by Johnson & Reissner (1960) in 
the linear theory of elasticity for the bending of a semi-infinite plate. It is similar 
also to the ‘wake behind a two-dimensional grid’ discovered by Hovasznay 
(1948)) which can represent large as well as small disturbances because it is 
simultaneously a solution of the Navier-Stokes, Oseen, and boundary-layer 
equations. Our problem is more involved than these, however, in that the central 
flow interacts with the boundary layers on the walls. 

A further complication appears in higher approximations for uniform entry. 
In  the upstream region the inviscid shear velocity - u,,(O, y) is seen from (3.3) 
to be singular a t  the upper and lower plates like 

- 2-@R-h( 1 F y)-8. 

Thus in the second approximation the boundary layer lies beneath an inviscid 
flow that is infinite a t  the surface. Boundary layers under singular external 
conditions have recently been examined by Conti & Van Dyke (1969)) who show 
that the regular progression in powers of R-4 is interrupted by the intrusion of 
other powers (and logarithms) of Reynolds number. Here the consequence is 
that the second term of the boundary-layer expansion in the upstream region 
would differ from the first by only R-k.? 

The scale of the entry layer is R times the channel width in any case. One may 
ask what is the scale of the corresponding ‘exit layer’: if a fully-developed 
Poiseuille flow is modified a t  some station, how far do the disturbances spread 
upstream Z Whereas Prandtl boundary layers are O(R-8) thick, Oseen boundary 
layers (except on a surface parallel to the basic stream) are only O(R-l) thick. 
This suggests that if the exit disturbance is small the viscous effect will extend 
upstream only a distance R - I  times the channel width; and this is the case even 
for large disturbances in the second solution of Kovasznay (1948). However, the 
direct viscous effect will ordinarily be accompanied by an inviscid rotational 
disturbance, so that the actual disturbance will extend upstream a few channel 
widths. This conclusion is confirmed by Wilson’s (1969) recent calculations of 
eigensolutions for small upstream perturbations of plane Poiseuille flow. 

It might be useful to extend the present analysis to axisymmetric flow. 
All the required elements are available: Atkinson & Goldstein (1938) have treated 

t Wilson (1970) has shown that the further course of the expansion is even more sur- 
prising: the third- and each higher-order term differs from its predecessor by ordcr R-%, 
R-I%, R-A, etc., so that an infinite number terms-with a ‘point of condensation’- 
separate the first-order boundary-layer solution from the usual corrcction of relative 
order R-4. 
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the downstream approximation by series expansions, and Hornbeck (1964) has 
calculated it numerically. The full Navier-Stokes equations have been solved 
numerically by Friedmann, Gillis & Liron (1968) for uniform entry, and by 
Vrentas, Duda & Bargeron (1966) for uniform flow far upstream with the pipe 
walls extended upstream as free streamlines (a rather more artificial situation 
than in plane motion.) Likewise, the other generalizations of channel entry 
mentioned in the introduction would gain in clarity if not in accuracy under 
reconsideration from the present viewpoint. 

I am indebted to Keith Stewartson for a lively discussion that clarified the 
singular-perturbation nature of this problem, to Andreas Acrivos for a brilliant 
piece of detective work in deducing from scanty clues that vorticity must have 
been overlooked in the numerical solution for uniform entry a t  R = 75, and to 
David Kassoy and Joseph Keller for helpful comments. Professors F. Osterle and 
C. S. Pings kindly supplied theses that were otherwise unavailable. This work was 
supported by Air Force Office of Scientific Research Contract I? 44620-69-C-0036. 
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